skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xie, Sihong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 21, 2026
  2. Free, publicly-accessible full text available January 19, 2026
  3. Uncertainty Quantification (UQ) is vital for decision makers as it offers insights into the potential reliability of data and model, enabling more informed and risk-aware decision-making. Graphical models, capable of representing data with complex dependencies, are widely used across domains. Existing sampling-based UQ methods are unbiased but cannot guarantee convergence and are time-consuming on large-scale graphs. There are fast UQ methods for graphical models with closed-form solutions and convergence guarantee but with uncertainty underestimation. We propose LinUProp, a UQ method that utilizes a novel linear propagation of uncertainty to model uncertainty among related nodes additively instead of multiplicatively, to offer linear scalability, guaranteed convergence, and closed-form solutions without underestimating uncertainty. Theoretically, we decompose the expected prediction error of the graphical model and prove that the uncertainty computed by LinUProp is the generalized variance component of the decomposition. Experimentally, we demonstrate that LinUProp is consistent with the sampling-based method but with linear scalability and fast convergence. Moreover, LinUProp outperforms competitors in uncertainty-based active learning on four real-world graph datasets, achieving higher accuracy with a lower labeling budget. 
    more » « less
    Free, publicly-accessible full text available December 8, 2025
  4. Sequences of linear systems arise in the predictor- corrector method when computing the Pareto front for multi- objective optimization. Rather than discarding information gen- erated when solving one system, it may be advantageous to recycle information for subsequent systems. To accomplish this, we seek to reduce the overall cost of computation when solving linear systems using common recycling methods. In this work, we assessed the performance of recycling minimum residual (RMIN- RES) method along with a map between coefficient matrices. For these methods to be fully integrated into the software used in Enouen et al. (2022), there must be working version of each in both Python and PyTorch. Herein, we discuss the challenges we encountered and solutions undertaken (and some ongoing) when computing efficient Python implementations of these recycling strategies. The goal of this project was to implement RMINRES in Python and PyTorch and add it to the established Pareto front code to reduce computational cost. Additionally, we wanted to implement the sparse approximate maps code in Python and PyTorch, so that it can be parallelized in future work. 
    more » « less
  5. Rumor spreaders are increasingly utilizing multimedia content to attract the attention and trust of news consumers. Though quite a few rumor detection models have exploited the multi-modal data, they seldom consider the inconsistent semantics between images and texts, and rarely spot the inconsistency among the post contents and background knowledge. In addition, they commonly assume the completeness of multiple modalities and thus are incapable of handling handle missing modalities in real-life scenarios. Motivated by the intuition that rumors in social media are more likely to have inconsistent semantics, a novel Knowledge-guided Dual-consistency Network is proposed to detect rumors with multimedia contents. It uses two consistency detection subnetworks to capture the inconsistency at the cross-modal level and the content-knowledge level simultaneously. It also enables robust multi-modal representation learning under different missing visual modality conditions, using a special token to discriminate between posts with visual modality and posts without visual modality. Extensive experiments on three public real-world multimedia datasets demonstrate that our framework can outperform the state-of-the-art baselines under both complete and incomplete modality conditions. 
    more » « less
  6. User-generated product reviews are essential for online platforms like Amazon and Yelp. However, the presence of fake reviews misleads customers. GNN is the state-of-the-art method that detects suspicious reviewers by exploiting the topologies of the graph connecting reviewers, reviews, and products. Nevertheless, the discrepancy in the detection accuracy over different groups of reviewers degrades reviewer engagement and customer trust in the review websites. Unlike the previous belief that the difference between the groups causes unfairness, we study the subgroup structures within the groups that can also cause discrepancies in treating different groups. This paper addresses the challenges of defining, approximating, and utilizing a new subgroup structure for fair spam detection. We first identify subgroup structures in the review graph that lead to discrepant accuracy in the groups. The complex dependencies over the review graph create difficulties in teasing out subgroups hidden within larger groups. We design a model that can be trained to jointly infer the hidden subgroup memberships and exploits the membership for calibrating the detection accuracy across groups. Comprehensive comparisons against baselines on three large Yelp review datasets demonstrate that the subgroup membership can be identified and exploited for group fairness. 
    more » « less
  7. Evans, Robin J.; Shpitser, Ilya (Ed.)
    Crowdsourcing is an effective and efficient paradigm for obtaining labels for unlabeled corpus employing crowd workers. This work considers the budget allocation problem for a generalized setting on a graph of instances to be labeled where edges encode instance dependencies. Specifically, given a graph and a labeling budget, we propose an optimal policy to allocate the budget among the instances to maximize the overall labeling accuracy. We formulate the problem as a Bayesian Markov Decision Process (MDP), where we define our task as an optimization problem that maximizes the overall label accuracy under budget constraints. Then, we propose a novel stage-wise reward function that considers the effect of worker labels on the whole graph at each timestamp. This reward function is utilized to find an optimal policy for the optimization problem. Theoretically, we show that our proposed policies are consistent when the budget is infinite. We conduct extensive experiments on five real-world graph datasets and demonstrate the effectiveness of the proposed policies to achieve a higher label accuracy under budget constraints. 
    more » « less
  8. Graphs are ubiquitous in social networks and biochemistry, where Graph Neural Networks (GNN) are the state-of-the-art models for prediction. Graphs can be evolving and it is vital to formally model and understand how a trained GNN responds to graph evolution. We propose a smooth parameterization of the GNN predicted distributions using axiomatic attribution, where the distributions are on a low-dimensional manifold within a high-dimensional embedding space. We exploit the differential geometric viewpoint to model distributional evolution as smooth curves on the manifold. We reparameterize families of curves on the manifold and design a convex optimization problem to find a unique curve that concisely approximates the distributional evolution for human interpretation. Extensive experiments on node classification, link prediction, and graph classification tasks with evolving graphs demonstrate the better sparsity, faithfulness, and intuitiveness of the proposed method over the state-of-the-art methods. 
    more » « less
  9. Robust explanations of machine learning models are critical to establish human trust in the models. Due to limited cognition capability, most humans can only interpret the top few salient features. It is critical to make top salient features robust to adversarial attacks, especially those against the more vulnerable gradient-based explanations. Existing defense measures robustness using lp norms, which have weaker protection power. We define explanation thickness for measuring salient features ranking stability, and derive tractable surrogate bounds of the thickness to design the R2ET algorithm to efficiently maximize the thickness and anchor top salient features. Theoretically, we prove a connection between R2ET and adversarial training. Experiments with a wide spectrum of network architectures and data modalities, including brain networks, demonstrate that R2ET attains higher explanation robustness under stealthy attacks while retaining accuracy. 
    more » « less